Adding Missing Words to Regular Expressions

Thomas Rebele!, Katerina Tzompanaki?, Fabian M. Suchanek!

1 Télécom ParisTech, Paris, France
2 ETIS lab/ENSEA /Cergy-Pontoise University/CNRS, Cergy-Pontoise, France
thomas.rebele@gmail.com, atzompan@u-cergy.fr, suchanek@enst.fr

Abstract. Regular expressions (regexes) are patterns that are used in
many applications to extract words or tokens from text. However, even
hand-crafted regexes may fail to match all the intended words. In this pa-
per, we propose a novel way to generalize a given regex so that it matches
also a set of missing (previously non-matched) words. Our method finds
an approximate match between the missing words and the regex, and
adds disjunctions for the unmatched parts appropriately. We show that
this method can not just improve the precision and recall of the regex,
but also generate much shorter regexes than baselines and competitors
on various datasets. (This is a corrected version.)

1 Introduction

Regular expressions (regexes) find applications in many fields: in information
extraction, DNA structure descriptions, document classification, spell-checking,
spam email identification, deep packet inspection, or in general for obtain-
ing compact representations of string languages. To create regexes, several ap-
proaches learn them automatically from example words [2-5]. These approaches
take as input a set of positive and negative example words, and output a regular
expression. However, in many cases, the regexes are hand-crafted. For example,
projects like DBpedia [10], and YAGO [19] all rely (also) on manually crafted
regexes. These regexes have been developed by human experts over the years.
They form a central part of a delicate ecosystem, and most likely contain domain
knowledge that goes beyond the information contained in the training sets.

In some cases, a regex does not match a word that it is supposed to match.
Take for example the following (simple) regex for phone numbers: \d{103}. After
running the regex over a text, the user may find that she missed the phone
number 01 43 54 65 21. An easy way to repair the regex would be to add
this number in a disjunction, as in \d{10} | 01 43 54 65 21. Obviously, this
would be a too specific solution, and any new missing words would have to be
added in the same way. A more flexible repair would split the repetition in the
original regex and inject the alternatives, as in (\d{2}\s?){4}\d{2}.

In this paper, we propose an algorithm that achieves such generalizations
automatically. More precisely, given a regex and a small set of missing words, we
show how the regex can be modified so that it matches the missing words, while
maintaining its assumed intention. This is a challenging endeavor, for several

The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-93037-4_6

thomas.rebele@gmail.com
atzompan@u-cergy.fr
suchanek@enst.fr
https://doi.org/10.1007/978-3-319-93037-4_6

reasons. First, the new word has to be mapped onto the regex, and there are
generally several ways to do this. Take, e.g., the regex <h1>.*</h1> and the
word <hl id=a>ABC</h1>. It is obvious to a human that the id has to go into
the first tag. However, a standard mapping algorithm could just as well map the
entire string id=a>ABC onto the part .*. This would yield <h1>?7.%</h1> as a
repair — which is clearly not intended. Second, there is a huge search space of
possible ways to repair the regex. In the example, <h1(>.*| id=a>ABC)</h1>
is certainly a possible repair — but again clearly not the intended one. Finally,
the repair itself is non-trivial. Take, e.g., the regex (abc|def)* and the word
abcabXefabc. To repair this regex, one has to find out that the word is indeed a
sequence of abc and def, except for two iterations. In the first iteration, the last
character of abc is missing. In the second iteration, the first character of def has
to be replaced by an X. Thus, the repair requires descending into the disjunction,
removing part of the left disjunct and part of the right one, before inserting the
X into one of them, yielding (abc?| [dX]ef) * as one possible repair.

Existing approaches typically require a large number of positive examples as
input in order to repair or learn a regex from scratch. This means that the user
has to come up with a large number of cases where the regex does not work as
intended — a task that requires time, effort, and in some cases continuous user
interaction (see Section 2 for examples). We want to relieve the user from this
effort. Our approach requires not more that 10 non-matching words to produce
meaningful generalizations. The contributions of this paper are as follows:

— we provide an algorithm to generalize a given regex, using string-to-regex
matching techniques and adding unmatched substrings to the regex;

— we show how such repairs can be performed even with a small set of examples;

— we run extensive and comparative experiments on standard datasets, which
show that our approach can improve the performance of the original regex in
terms of recall and precision.

This paper is structured as follows. Section 2 starts with a survey of related

work. Section 3 introduces preliminaries, and Section 4 presents our algorithm.

Section 5 shows our experiments, before Section 6 concludes.

2 Related Work

In this paper we consider repairing regexes that fail to match a set of words pro-
vided by the user. We discuss work relevant to our problem along three axes: (1)
matching regexes to strings, (2) automatic generation of regexes from examples,
and (3) transformation of an existing regex based on examples.

Regex matching. Many algorithms (e.g., [6]) aim to match a regex efficiently
on a text. Another class of algorithms deals with matching the input regex to
a given input word — even though the regex does not match the string entirely
[8,14]. Other algorithms for approximate regex matching [15,20] optimize for
efficiency. We build on the seminal algorithm of [14]. Different from all these
approaches, our work aims not just to match, but also to repair the regex.

Regex learning. Several approaches allow learning a regex automatically from
examples. One approach [5] uses rules to infer regexes from positive examples
for entity identifiers. Other work [2—4] uses genetic programming techniques to
derive the best regex for identifying given substrings in a given set of strings.
The work presented in [16] follows a learning approach to derive regexes for
spam email campaign identification. In the slightly different context of combining
various input strings to construct a new one, the work of [7] proposes a language
to synthesize programs, given input-output examples. In the same spirit, the
authors of [9] proposed an interactive framework in which users can highlight
example subparts of text documents for data extraction purposes.

All of these works take as input a set of positive and negative examples, for
which they construct a regex from scratch. In our setting, in contrast, we want
to repair a given regex. Furthermore, we have only very few positive examples.
Regex transformation. There are several approaches that aim to improve a
given regex. One line of work [11] takes as input a set of positive and negative
examples as well as an initial regex to be improved. As in our setting, the goal
is to maximize the F-measure of the regex. The proposed approach makes the
regex stricter, so that it matches less words. Our goal is different: We aim to
relax the initial regex, so that it covers words that it did not match before.

Similar to us, the work of [13] attempts to relax an initial regex. The approach
requires the user in the loop, though, while our method is autonomous. Only two
works [1,17] can relax a given regex automatically. However, as we will see in our
experiments, both works produce very long regexes (usually over 100 characters).
Our approach, in contrast, produces much shorter expressions — at comparable
or even better precision.

3 Preliminaries

We assume that the reader is familiar with the basics of regexes. We write L(r)
for the language of a regex, and T'(r) for the syntax tree of a regex. Figure 1
shows an example of a regex with its syntax tree, along with a matching of a
string to the regex. We further define a matching as follows:

Definition (Matching). Given a string s and a regex r, a matching is a partial

functionm from {1,...,|s|} to leaf nodes of v’s syntaz tree T'(r), denoted ml; . s,

such that one of the following applies:

— 1 s a character or character class and 3i : s; € L(r)

— r =pq and 3i s.t. m|1,.; is a matching for p and m|;i . |5 is a matching
for q

— r=plq and m is a matching for p or for q

—r=pxand Fi,...,0; =1 N <--- <i; ANij=|s| +F1AVE e {1,...,j-1}:
Miy.... (ips1)—1 8 @ matching for p

A matching is mazximal, if there is no other matching that is defined on more
positions of the string. Figure 1 shows a maximal matching for the regex abxc
and the (non-matching) string abbdc. Maximal matchings can be computed with
the algorithm proposed in [14]. The problem that we address is the following:

Syntax tree T'(r)

a b c
N
AR ‘l N
Matching m A AN
for a string s a b b d c

Fig. 1: The syntax tree and a matching for the regex ab*c

Problem Statement. Given a regular expression r,a set S of positive exam-
ples, and a set E~ of negative examples, s.t. |S| < |E~|, find a “good” regular
expression r' s.t. L(r) C L(r"), S C L(r'), and |[L(r") N E~| small.

In other words, we want to generalize the regex so that it matches all
strings it matched before, plus the new positive ones. For example, given a regex
r =[0-9]+ and a string s =“12 34 56”, a possible regex to find is ' =([0-9]
?7)+. This regex matches all strings that » matched, and it also matches s.

Now there are obviously trivial solutions to this problem. One of them is
to propose r =.*. This solution matches s. However, it will most likely not
capture the intention of the orginal regex, because it will match arbitrary strings.
Therefore, one input to the problem is a set of negative examples F~. The regex
shall be generalized, but only so much that it does not match many words from
E~. The rationale for having a small set S and a large set E~ is that it is not
easy to provide a large set of positive examples: these are the words that the
hand-crafted regex does not (but should) match, and they are usually few. In
contrast, it is somewhat easier to provide a set of negative examples. It suffices
to provide a document that does not contain the target words. All strings in
that document can make up £, as we show in our experiments.

Another trivial solution to our problem is ' = r|s. However, this solution
will not capture the intention of the regex either. In the example, the regex
r’ =[0-9]+112 34 56 will match s, but it will not match any other sequence of
numbers and spaces. Hence, the goal is to generalize the input regex appropri-
ately, i.e., to find a “good” regex that neither over-specializes nor over-generalizes.

4 Repairing Regular Expressions

Given a regex r, a set of strings S, and a set of negative examples F~, our goal
is to extend r so that it matches the strings in S. Table 1 shows an example with
only a single string s € S and no negative examples. Our algorithm is shown
in Algorithm 1. It takes as input a regex r, a set of strings S5, a set of negative
examples £, and a threshold . The threshold « indicates how many negative
examples the repaired regex is allowed to match. Higher values for « allow a
more aggressive repair, which matches more negative examples. & = 1 makes

Table 1: Example regex reparation
Original regex r: (\d{3}-){2}\d{4}
String s € S: (234) 235-5678
Repaired regex: \(?\d{3}(-1\))\d{3}-\d{4}

the algorithm more conservative. In that case, the method will try to match
at most as many negative examples as the original regex did. The algorithm
proceeds in 4 steps, which we will now discuss in detail.

Algorithm 1 Repair regex

INPUT: regex r, set of strings S, negative examples £, threshold o > 1
OUTPUT: modified regex r

1 M <+ U,cg findMatchings(r, s)

2: gaps < U, findGaps(m)

3: findGapQOverlaps(r, gaps)

4: addMissingParts(r, S, gaps, E~, «)

Step 1: Finding the Matchings. For each word s € S, our algorithm finds

the maximal matchings (see again Section 3). We use Myers’ algorithm [14] for

this purpose. The maximal matchings are collected in a set M.

Step 2: Finding the Gaps. The matching tells us which parts of the regex

match the string. To fix the regex, we are interested in the parts that do not

match the string. For this purpose, we introduce a data structure for the gaps

in the string (i.e., for the parts of the string that are not mapped to the regex).

Formally, a gap g for string s in a matching m is a tuple of the following;:

— g.start: The index in the string where the gap starts (possibly 0).

— g.end: The index in the string where the gap ends (possibly |s|+1).

— g.span: The substring between g.start and g.end (excluding both).

— g.m: The matching m, which we store in the gap tuple for later access.

— g.parts: An (initially empty) set that stores sequences of concatenation child
nodes. The sequences are disjoint, and partition the regex. Each p € g.parts
is a possibility to inject g.span into the regex as (plg.span).

Ezample (Finding the gaps): When matching the word (234) 235-5678
onto the regex \d\d\d-\d\d\d-\d\d\d\d, we encounter two gaps: gap;
embraces the substring “(” with gap;.start = 0, gap;.end = 2. gaps em-
braces the substring “) ” with gaps.start = 4, gaps.end = 7.

For each matching m, we find all gaps g that have no matching character in
between (i.e., 3k : g.start < k < g.end A m(k) is defined), and where at least
one of the following holds
— there is a character in the string between g.start and g.end,

ie., g.start < g.end — 1
— there is a gap in the regex between m(g.start) and m(g.end),

i.e., m(g.start) & previous(m(g.end)).

This set of gaps is returned by the method findGaps in Algorithm 1, Line 2.
Step 3: Finding Gap Overlaps. Gaps can overlap. Take for example the regex
r = 01234567 and the missing words 0x567 and 012y7. One possible repair is
0(12)7(341x1y)7(56)77. We can find this repair only if we consider the overlap
between the gaps. In this example, we have two gaps: one with span 1234 and
one with span 3456. We have to partition the concatenation for the first gap
into 12 and 34, and for the second gap into 34 and 56.

This is what Algorithm 2 does. It takes as input the regex r and the set
of gaps gaps. It walks through the regex recursively, and treats each node of
the regex. We split quantifiers r{min, maxz} with maz < 100 into r{...}r{...},
if the gap occurs between iterations. For other quantifiers, Kleene stars, and
disjunctions, we descend recursively into the regex tree (Line 5).

For concatenation nodes, we determine all gaps that have their start point
or their end point inside the concatenation (Line 7). Then, we determine the
partitioning boundaries (Line 8; | € r means that regex r has a leaf node).
We consider each gap g (Line 9). We find whether the start point or the end
point of any other gap falls inside g. This concerns only the boundaries between
s and e (Lines 10-11). We partition the concatenation subsequence c¢s . ..ce—1 by
cutting at the boundaries (Line 12). Finally, the method is called recursively on
the children of the concatenation that contain the start point or the end point
of any gap (Lines 13-14).

Algorithm 2 Find Gap Overlaps

INPUT: regex r, gaps gaps
OUTPUT: modified regex r, modified gaps gaps

1: if r is quantifier g{min, maz} with maz < 100 then

2: r < q{...}q{. ..} with appropriate ranges

3: findGapOverlaps(r, gaps)

4: else if r is disjunction or Kleene star or quantifier then

5: for child ¢ of r do findGapOverlaps(c, gaps)

6: else if r is concatenation c; ...c, then

7: gaps' < {g : g € gaps A g.m(g.start) € rV g.m(g.end) € r}

8: idr + {i+1: g € gaps' A g.m(g.start) € c;} U{i: g € gaps’ A g.m(g.end) € ¢;}
9: for g € gaps’ do

10: s < i+1 if g.m(g.start) € c;, else 1

11: e+ i if gm(g.end) € ¢;, else n + 1

12: g.parts < g.parts U {c;i...cj—1:4,j€idrANs<i<j<eA

Pk :kecideNi<k<j)}
13: for c; € {c; : g € gaps’. g.m(g.start) € ¢; V g.m(g.end) € ¢;} do
14: findGapOverlaps(c;, gaps)

Step 4: Adding Missing Parts. The previous step has given us, for each gap,
a set of possible partitionings. In our example of the regex 01234567, the word
012y7, and the gap 3456, we have obtained the partitioning 34|56. This means
that both 34 and 56 have to become optional in the regex, and that we can
insert the substring y as an alternative to either of them: 012(34|y) (66) 7?7 or

Algorithm 3 Add Missing Parts

INPUT: regex r, set of strings S, gaps gaps, negative examples E~, threshold a@ > 1
OUTPUT: modified regex r

1: org < r

2: for g € gaps do

3: for part p = (¢; -+ - ¢;) € g.parts do

4: r’ < r with ¢; - - - ¢; replaced by (c¢; -+ - c;lg.span),

and all other parts c; ...cy in g.parts made optional with (cz...cyl)

5 if |[E-NL(r")| <a-|E” NL(org)| then
6: rr
T break
8: 8 + S\ L(r)

9: undo all changes for s € S’ not required by other repairs
10: G « generalize words in S’

11: for g € G do

12: if [ETNL(rlg)l <a-|E~ N L(org)| then

13: r<rlg

14: else

15: for s€ L(g)n S’ do
16: r<rls

012(34)7(561y) 7. Algorithm 3 will take this decision based on which solution
performs better on the set £~ of negative examples. It may also happen that
none of these solutions is permissible, because they all match too many negative
examples. In that case, the algorithm will just add the word as a disjunct to the
original regex, as in 01234567]012y7. To make these decisions, the algorithm
will compare the number of negative examples matched by the repaired regex
with the number of negative examples matched by the original regex. The ratio
of these two should be bounded by the threshold «.

Algorithm 3 takes as input a regex r, a set of gaps gaps with partitionings,
negative examples £, and a threshold a. The algorithm first makes a copy of
the original regex (Line 1) and treats each gap (Line 2). For each gap, it considers
all parts (Line 3). In the example, we will consider the part 34 and the part 56
of the gap 3456. The algorithm transforms the part into a disjunction of the
part and the span of the gap. In the example, the part 34 is transformed into
(341y) (Lines 4). If the number of matched negative examples does not exceed
the number of negative examples matched by the original regex times « (Line 5),
the algorithm chooses this repair, and stops exploring the other parts of the gap
(Lines 6-7). In Line 8, the algorithm collects all positive examples that are still
not matched. The changes that were made for these words are undone (Line 9).
Line 10 generalizes these words into one or several regexes. The generalization
is adapted from [1]. First, we assign a group key to every word. The key is
obtained by substituting substrings consisting only of digits with a (single) \d,
lower or upper case characters with a [a-z] or [A-Z], and remaining characters
with character class \W or \w. Finally we obtain the group regex r by adding
{min, max} after every character class, such that r matches all strings in that

group. The algorithm then checks if the regex obtained this way is good enough
(Lines 12-13). If this is the case, the regex is added as a disjunction (Line 13).
Otherwise the words that contributed to that group are added disjunctively
(Line 16). Table 1 shows how our method repairs the example regex.

Time complexity. Let N’ be the length of the input regex in expanded form
(i.e., where quantifiers r{...} have been replaced by copies of 7). Let M be the
sum of the lengths of the missing words. Let ¢ be the runtime of applying a regex
of length O(N’) to the negative examples. We show in our technical report [18]
that our algorithm runs in O(N'Mt).

5 Experiments

5.1 Setup

Measures. To evaluate our algorithm, we follow related work in the area [1,13,
17] and use a gold standard of positive example strings, E* O S. With this, the
precision of a regex r is the fraction of positive examples matched among all
examples matched:

BN L)
Preelt) = T n B U E)]

The recall of r is the fraction of positive examples matched:

B L)

rec(r) = B
As usual, the F1 measure is the harmonic mean of these two measures.
Competitors. We compare our approach to both other methods [1,17] that can
generalize given regexes (see Section 2). For [1], the code was not available upon
request. We therefore had to re-implemented the approach. We think that our
implementation is fair, because it achieves a higher Fl-value (87% and 84%, as
opposed to 84% and 82%) when run on the same datasets as in [1] (s.b.) with a
full E* as input.
Datasets. We use 3 datasets from related work. The Relie dataset? [11] includes
four tasks (phone numbers, course numbers, software names, and URLs). Each
task comes with a set of documents. Each document consists of a span of words,
and 100 characters of context to the left and to the right. Each span is annotated
as a positive or a negative example, thus making up our sets E+ and E~, re-
spectively. We manually cleaned the dataset by fixing obvious annotation errors,
e.g., where a word is marked as a positive and a negative example in the same
task. In total, the dataset contains 90807 documents.

The Enron-Random dataset* [12] contains a set of emails of Enron staff. The
work of [1] uses it to extract phone numbers and dates. Unfortunately, there
is no gold standard available for these tasks, and the authors of [1] could not

3http ://dbgroup.eecs.umich.edu/regexLearning/
http://www.cs.cmu.edu/"einat/datasets.html

http://dbgroup.eecs.umich.edu/regexLearning/
http://www.cs.cmu.edu/~einat/datasets.html

provide one. Therefore, we manually annotated phone numbers and dates on 200
randomly selected files, which gives us ET. As in [1], any string that is matched
on these 200 documents and that is not a positive example will be considered a
negative example. In this way, we obtain a large number of negative examples.

The YAGO-Dataset consists of Wikipedia infobox attributes, where the dates
and numbers that were used to build YAGO [19] have been annotated as positive
examples. This dataset is used in [17]. As in Enron-Random, all strings that are
not annotated as positive examples count as negative examples.

We thus have 8 tasks: 4 for the Relie dataset, 2 for the Enron dataset, and
2 for the YAGO dataset. Each task comes with positive examples ET and neg-
ative examples E~. Our algorithm needs as input an initial regex that shall
be repaired. For the Enron and YAGO tasks, we used the initial regexes given
in [1,17]. For Relie, we asked our colleagues to produce regexes by hand. For
this purpose, we provided them with 10 randomly chosen examples from E* for
each task, and asked them to write a regex. This gives us 5 initial regexes for
each Relie task. Table 2 summarizes our datasets.

Table 2: Statistics of the datasets

task documents avg. size |ET| regexes
ReLie/phone [11] 41896 211 2657 5
ReLie/course [11] 569 210 314 5
ReLie/software [11] 44413 185 2307 5
ReLie/urls [11] 3929 176 735 5
Enron/phone [1] 225 1452 145 1
Enron/date [1] 225 1452 392 1
YAGO /dates [17] 100000 25 109824 15
YAGO /numbers [17] 100000 57 131149 15

Runs. Our algorithm does not take as input the entire set of positive examples
E™, but a small subset S of positive examples. To simulate a real setting for
our algorithm, we randomly select S from ET. We average our results over 10
different random draws of S. For each draw, we use each initial regex that we have
at our disposal, and average our results over these. Thus, we run our algorithm
50 times for each Relie task, 10 times for each Enron-Random task, and 150
times for each YAGO task, and we average the obtained numbers over these.
Our competitors are not designed to work on a small set of positive examples.
Therefore, we provide them with additional positive examples obtained from
running the original regex on the input dataset. Our method does not need this
step. All algorithms are implemented in Java 8. The experiments were run on
an Intel Xeon with 2.70GHz and 250GB memory.

5.2 Experimental Evaluation and Results

Fl-measure. Table 3 shows the Fl-measure on all datasets for different al-
gorithms: the original regex, the disjunction-baseline (which consists just of a

Table 3: F1 measure for different values of the parameter «, improvement over
the dis-baseline in percentage points. Bold numbers indicate the maximum F1
measure within each row. A (and A) indicates significant improvement relative
to the dis-baseline for a significance level of 0.01 (and 0.05).

baseline competitors our approach
task original dis star [1] 17 =10 a=11 =120
ReLie/phone 81.6 82.1 12.3 -5v +.3 +.8 +16 2 +42.3a
ReLie/course 45.8 46.0 484 +6.41 +.2a +.5a4 +13a +14a
ReLie/software 9.2 124 99 +1a -0 +.7a +39 +4.6
ReLie/urls 55.2 56.0 31.5 -30.3v +.3 +2.9 +4.2. +4.2.
Enron/phone 61.7 61.7 1 77 +53aA +21.0a +21.04 +21.0a
Enron/date 72.3 72.4 .0 -496 v -.0 +.6 +.6 +.4
YAGO /number 40.1 40.1 31.0 -11.5v +1.8a +34 +2.2 +2.4
YAGO/date 70.1 70.1 343 -263v +.3a +6.9a1 +6.7a +6.6 a

Table 4: Length of the repaired regexes (# of characters). Bold numbers indicate
the shortest ones (without the original).

baseline competitors our approach
task original ~ dis star 1] [17] =10 a=11 a=1.20
ReLie/phonenum 41.6 230.3 2.0 94.6 221.2 46.8 50.0 53.1
ReLie/coursenum 22.2 203.2 2.0 280.4 181.1 33.7 48.2 52.5
ReLie/softwarename 43.2 168.2 2.0 594.7 168.2 54.4 67.3 67.8
ReLie/urls 52.4 630.3 2.0 5826.1 570.2 70.6 74.7 74.7
Enron/phone 17.0 199.1 2.0 243.8 164.8 41.4 41.4 41.4
Enron/date 17.0 170.6 2.0 581.0 170.6 34.2 34.2 35.6
YAGO /number 65.4 223.2 2.0 19471.0 2079 1194 120.5 120.7
YAGO/date 191.4 336.2 2.0 4337.0 313.6 203.6 203.6 203.5

disjunction of the original regex with the 10 positive words), the star-baseline
(which is just .*), the method from [1], the method from [17], and our method
with different values for a.. The table shows the improvement of the F'1 measure
w.r.t. the dis-baseline, in percentage points. For example, for Relie/phone and
a = 1.2, our algorithm achieves an F1 value of 82.1%-+2.3%—84.4%. We can see
that, across almost all tasks and settings, our algorithm outperforms the original
regex as well as the dis-baseline. We verified the significance of the F1 measures
with a micro sign test [21]. Detailed results on recall and precision can be found
in our technical report [18].

If v is small, the algorithm is conservative, and tends towards the dis-baseline.
If « is larger, the algorithm performs repairs even if this generates more nega-
tive examples. As we can see, the impact of « is marginal. We take this as an
indication that our method is robust to the choice of the parameter.
Regex length. Table 4 shows the average length of the generated regexes (in
number of characters). For our approach, the length depends on «: If the value

Table 5: Example of a scenario for the Relie/phonenum task

Original regex: (0,1} \a{31){0,1}(-IN\. |) \a{3}(-I\.|) a{4}

Missing words: :734-763-2200 >317.569.8903 >443.436.0787 >512.289.1407
>734-615-9673 >734-647-8027 >734-763-5664 >734.647.3256 >773.339.3223

Repaired regex: ((1:1>)?\d{3}1)7(-I\.|)\d{3}(-I\.|)\d{4}

is large, the algorithm will tend to integrate the words into the original regex.
Then, the words are no longer subject to the generalization mechanism. Still, the
impact of « is marginal: No matter the value, our algorithm produces regexes
that are up to 8 times shorter than the dis-baseline, and nearly always at least
twice as short as either competitor — at comparable or better precision and recall.
Runtime. For the ReLie and Enron dataset, all approaches take a time in the
order of seconds for repairing one regex. Due to the much larger ET, runtimes
differ for the YAGO dataset: fastest system is [17] with 12's on average, followed
by our approach with 84 s. The runtime of our reimplementation of [1] lies in the
order of minutes, as we did not optimize for runtime efficiency.

Example. Table 5 shows an example of a repaired regex in the Relie/phonenum
task. Our algorithm successfully identifies the non-matched characters : and
> at the beginning of a phone number. It introduces them as options at the
beginning of the original regex, leaving the rest of the regex intact. The dis-
baseline, in contrast, would add all words in a large disjunction. Our solution is
more general and more syntactically similar to the original regex.

6 Conclusion

In this paper, we have proposed an algorithm that can add missing words to a
given regular expression. With only a small set of positive examples, our method
generalizes the input regex, while maintaining its structure. In this way, our
approach improves the precision and recall of the original regex.

We have evaluated our method on various datasets, and we have shown that
with few positive examples, we can improve the F1 measure on the ground truth.
This is a remarkable result, because it shows that regexes can be generalized
based on very small training data. What is more, our approach produces regexes
that are significantly shorter than the baseline and competitors. This shows that
our method generalizes the regexes in a meaningful and non-trivial way.

Both the source code of our approach and the experimental results are avail-
able online at https://thomasrebele.org/projects/regex-repair. For fu-
ture work, we aim to shorten the produced regexes further, by generalizing the
components into character classes.

Acknowledgments This research was partially supported by Labex DigiCosme
(project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the
program “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).

https://thomasrebele.org/projects/regex-repair

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Babbar, R., Singh, N.: Clustering based approach to learning regular expressions

over large alphabet for noisy unstructured text. In: Workshop on Analytics for
Noisy Unstructured Text Data (2010)

Bartoli, A., Davanzo, G., Lorenzo, A.D., Mauri, M., Medvet, E., Sorio, E.: Auto-
matic generation of regular expressions from examples with genetic programming.
In: GECCO (2012)

Bartoli, A., Davanzo, G., Lorenzo, A.D., Medvet, E., Sorio, E.: Automatic synthesis
of regular expressions from examples. IEEE Computer 47(12) (2014)

Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: On the automatic construction
of regular expressions from examples. In: GECCO (2016)

Brauer, F., Rieger, R., Mocan, A., Barczynski, W.M.: Enabling information ex-
traction by inference of regular expressions from sample entities. In: CIKM (2011)
Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., Di Pietro, A.: An
improved dfa for fast regular expression matching. SIGCOMM Comput. Commun.
Rev. 38(5), 29-40 (Sep 2008). https://doi.org/10.1145/1452335.1452339
Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: SIGPLAN Notices. vol. 46 (2011)

Knight, J.R., Myers, E.W.: Approximate regular expression pattern matching with
concave gap penalties. Algorithmica 14(1) (1995)

Le, V., Gulwani, S.: FlashExtract: a framework for data extraction by examples.
In: PLDI (2014)

Lehmann, J., et. al: DBpedia - a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web J. 6(2) (2015)

Li, Y., Krishnamurthy, R., Raghavan, S.; Vaithyanathan, S., Jagadish, H.V.: Reg-
ular expression learning for information extraction. In: EMNLP (2008)

Minkov, E., Wang, R.C., Cohen, W.W.: Extracting personal names from email:
Applying named entity recognition to informal text. In: EMNLP (2005)

Murthy, K., Padmanabhan, D., Deshpande, P.: Improving recall of regular expres-
sions for information extraction. In: WISE (2012)

Myers, E.W., Miller, W.: Approximate matching of regular expressions. Bulletin
of mathematical biology 51(1) (1989)

Navarro, G.: Approximate Regular Expression Searching with Arbitrary Integer
Weights. Nord. J. Comput. 11(4) (2004)

Prasse, P., Sawade, C., Landwehr, N., Scheffer, T.: Learning to identify concise
regular expressions that describe email campaigns. J. Mach. Learn. Res. 16(1)
(Jan 2015)

Rebele, T., Tzompanaki, K., Suchanek, F.: Visualizing the addition of missing
words to regular expressions. In: ISWC (2017)

Rebele, T., Tzompanaki, K., Suchanek, F.: Technical report: Adding missing words
to regular expressions. Tech. rep., Telecom ParisTech (2018)

Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW (2007)

Wu, S., Manber, U., Myers, E.: A subquadratic algorithm for approximate regular
expression matching. Journal of algorithms 19(3) (1995)

Yang, Y., Liu, X.: A re-examination of text categorization methods. In: SIGIR
(1999)

https://doi.org/10.1145/1452335.1452339

	Adding Missing Words to Regular Expressions

